1,117 research outputs found

    The effect of eccentric exercise velocity on selected measures of muscle function and soreness of the Human elbow flexors in untrained males and females

    Get PDF
    Eccentric contractions, where a muscle is repeatedly lengthened while generating torque, result in decreased muscle function and muscle soreness. This study was designed to determine whether there was a difference in muscle response of the elbow flexors from untrained subjects (n = 12) between a bout of high intensity eccentric exercise at 30°•s-1 (LVE) compared to the equivalent at 210°•s-1 (HVE). Subjects performed 120 seconds of eccentric exercise of the elbow flexors using a Cybex 6000 Isokinetic Dynamometer. At 30°-s-1, a total of 30 repetitions were required whilst at 210°•s-1, 210 contractions were performed (at a 1:7 work/rest ratio). Both exercise bouts resulted in significant decrements in isometric and dynamic strength measures (

    Weight loss strategies in combat sports and concerning habits in mixed martial arts

    Get PDF
    Context: Combat sports are typically divided into weight classes, and body-mass manipulation to reach a weight class is commonplace. Previous research suggests that weight loss practices in mixed martial arts (MMA) may be more extreme than in other combat sports. Purpose: To investigate the magnitude of weight loss and the prevalence of weight loss strategies in different combat sports. Methods: Competitors (N = 637) from Brazilian jiu-jitsu, boxing, judo, MMA, Muay Thai/kickboxing, taekwondo, and wrestling completed an online questionnaire seeking information regarding their weight loss practices. Results: Body-mass manipulation was commonly undertaken by all combat-sport athletes, with a particularly high incidence of gradual dieting, increased exercise, and fluid restriction. Skipping meals was higher in taekwondo and wrestling (84%) compared with the other combat sports (∼58%), whereas training in heated rooms and forced oral fluid loss (spitting) was higher in wrestling (83% and 47%, respectively) compared with other combat sports (∼45% and ∼19%, respectively). MMA athletes reported the highest usage of sauna (76%) and water loading (67%) while also reporting the second-highest use of training in rubber/plastic suits (63%). Conclusions: Body-mass manipulation was present in all combat sports, with the prevalence and magnitude of acute weight loss greater in MMA. The incidence of and practices reported will help support staff be fully aware of the variety of methods these athletes and coaches may use to achieve weight loss. Additionally, the results could aid regulatory bodies in the further development of policies on weight cutting

    Reviewing the current methods of assessing hydration in athletes

    Get PDF
    Background Despite a substantial body of research, no clear best practice guidelines exist for the assessment of hydration in athletes. Body water is stored in and shifted between different sites throughout the body complicating hydration assessment. This review seeks to highlight the unique strengths and limitations of various hydration assessment methods described in the literature as well as providing best practice guidelines. Main body There is a plethora of methods that range in validity and reliability, including complicated and invasive methods (i.e. neutron activation analysis and stable isotope dilution), to moderately invasive blood, urine and salivary variables, progressing to non-invasive metrics such as tear osmolality, body mass, bioimpedance analysis, and sensation of thirst. Any single assessment of hydration status is problematic. Instead, the recommended approach is to use a combination, which have complementary strengths, which increase accuracy and validity. If methods such as salivary variables, urine colour, vital signs and sensation of thirst are utilised in isolation, great care must be taken due to their lack of sensitivity, reliability and/or accuracy. Detailed assessments such as neutron activation and stable isotope dilution analysis are highly accurate but expensive, with significant time delays due to data analysis providing little potential for immediate action. While alternative variables such as hormonal and electrolyte concentration, bioimpedance and tear osmolality require further research to determine their validity and reliability before inclusion into any test battery. Conclusion To improve best practice additional comprehensive research is required to further the scientific understanding of evaluating hydration status

    The current state of weight-cutting in combat sports

    Get PDF
    In combat sports, athletes are divided into categories based on gender and body mass. Athletes attempt to compete against a lighter opponent by losing body mass prior to being weighed (i.e., \u27weight-cutting\u27). The purpose of this narrative review was to explore the current body of literature on weight-cutting and outline gaps for further research. Methods of weight-loss include energy intake restriction, total body fluid reduction and pseudo extreme/abusive medical practice (e.g., diuretics). The influence of weight-cutting on performance is unclear, with studies suggesting a negative or no effect. However, larger weight-cuts (~5% of body mass inh) do impair repeat-effort performance. It is unclear if the benefit from competing against a smaller opponent outweighs the observed reduction in physical capacity. Many mechanisms have been proposed for the observed reductions in performance, ranging from reduced glycogen availability to increased perceptions of fatigue. Athletes undertaking weight-cutting may be able to utilise strategies around glycogen, total body water and electrolyte replenishment to prepare for competition. Despite substantial discussion on managing weight-cutting in combat sports, no clear solution has been offered. Given the prevalence of weight-cutting, it is important to develop a deeper understanding of such practices so appropriate advice can be given

    The use of a functional test battery as a noninvasive method of fatigue assessment

    Get PDF
    To assess whether a battery of performance markers, both individually and as group, would be sensitive to fatigue, a within group random cross-over design compared multiple variables during seated control and fatigue (repeated sprint cycling) conditions. Thirty-two physically active participants completed a neuromuscular fatigue questionnaire, Stroop task, postural sway, squat jump, countermovement jump, isometric mid-thigh pull and 10 s maximal sprint cycle (Sprintmax) before and after each condition (15 min, 1 h, 24 h and 48 h). In comparison to control, larger neuromuscular fatigue questionnaire total score decrements were observed 15 min (5.20 ± 4.6), 1 h (3.33 ± 3.9) and 24 h (1.83 ± 4.8) after cycling. Similarly, the fatigue condition elicited greater declines than control at 15 min and 1 h post in countermovement jump height (1.67 ± 1.90 cm and 1.04 ± 2.10 cm), flight time-contraction time ratio (0.03 ± 0.06 and 0.05 ± 0.11), and velocity (0.06 ± 0.07 m?s-1 and 0.04 ± 0.08 m?s-1). After fatigue, decrements were observed up to 48 h for average Sprintmax cadence (4-6 RPM), up to 24 h in peak Sprintmax cadence (2-5 RPM) and up to 1 h in average and peak Sprintmax power (45 ± 60Wand 58 ± 71 W). Modelling variables in a stepwise regression demonstrated that CMJ height explained 53.2% and 51.7% of 24 h and 48 h Sprintmax average power output. Based upon these data, the fatigue induced by repeated sprint cycling coincided with changes in the perception of fatigue and markers of performance during countermovement and squat jumps. Furthermore, multiple regression modelling revealed that a single variable (countermovement jump height) explained average power output. © 2019 Hughes et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Considerations When Assessing Endurance in Combat Sport Athletes

    Get PDF
    Combat sports encompass a range of sports, each involving physical combat between participants. Such sports are unique, with competitive success influenced by a diverse range of physical characteristics. Effectively identifying and evaluating each characteristic is essential for athletes and support staff alike. Previous research investigating the relationship between combat sports performance and measures of strength and power is robust. However, research investigating the relationship between combat sports performance and assessments of endurance is less conclusive. As a physical characteristic, endurance is complex and influenced by multiple factors including mechanical efficiency, maximal aerobic capacity, metabolic thresholds, and anaerobic capacities. To assess endurance of combat sports athletes, previous research has employed methods ranging from incremental exercise tests to circuits involving sports-specific techniques. These tests range in their ability to discern various physiological attributes or performance characteristics, with varying levels of accuracy and ecological validity. In fact, it is unclear how various physiological attributes influence combat sport endurance performance. Further, the sensitivity of sports specific skills in performance based tests is also unclear. When developing or utilizing tests to better understand an athletes’ combat sports-specific endurance characteristic, it is important to consider what information the test will and will not provide. Additionally, it is important to determine which combination of performance and physiological assessments will provide the most comprehensive picture. Strengthening the understanding of assessing combat sport-specific endurance as a physiological process and as a performance metric will improve the quality of future research and help support staff effectively monitor their athlete’s characteristics

    The effects of either a mirror, internal or external focus instructions on single and multi-joint tasks

    Get PDF
    Training in front of mirrors is common, yet little is known about how the use of mirrors effects muscle force production. Accordingly, we investigated how performing in front of a mirror influences performance in single and multi-joint tasks, and compared the mirror condition to the established performance effects of internal focus (IF) and external focus (EF) instructions in a two part experiment. In the single-joint experiment 28 resistance-trained participants (14 males and 14 females) completed two elbow flexion maximal voluntary isometric contractions under four conditions: mirror, IF, EF and neutral instructions. During these trials, surface EMG activity of the biceps and triceps were recorded. In the multi-joint experiment the same participants performed counter-movement jumps on a force plate under the same four conditions. Single-joint experiment: EF led to greater normalized force production compared to all conditions (P ≤ 0.02, effect-size range [ES] = 0.46–1.31). No differences were observed between neutral and mirror conditions (P = 0.15, ES = 0.15), but both were greater than IF (PP ≥ 0.1, ES = 0.10–0.21). Multi-joint experiment: Despite no statistical difference (P = 0.10), a moderate effect size was observed for jump height whereby EF was greater than IF (ES = 0.51). No differences were observed between neutral and mirror conditions (ES = 0.01), but both were greater than IF (ES = 0.20–22). The mirror condition led to superior performance compared to IF, inferior performance compared to EF, and was equal to a neutral condition in both tasks. These results provide novel and practical evidence concerning mirror training during resistance type training

    Countermovement jump and squat jump force-time curve analysis in control and fatigue conditions

    Get PDF
    This study aimed to reanalyze previously published discrete force data from countermovement jumps (CMJs) and squat jumps (SJs) using statistical parametric mapping (SPM), a statistical method that enables analysis of data in its native, complete state. Statistical parametric mapping analysis of 1-dimensional (1D) force-time curves was compared with previous zero-dimensional (0D) analysis of peak force to assess sensitivity of 1D analysis. Thirty-two subjects completed CMJs and SJs at baseline, 15 minutes, 1, 24, and 48 hours following fatigue and control conditions in a pseudo random cross-over design. Absolute (CMJABS/SJABS) and time-normalized (CMJNORM/SJNORM) force-time data were analyzed using SPM 2-way repeated measures analysis of variance with significance accepted at α = 0.05. The SPM indicated a magnitude of difference between force-time data with main effects for time (p \u3c 0.001) and interaction (p \u3c 0.001) observed in CMJABS, SJABS, and SJNORM, whereas previously published 0D analysis reported no 2-way interaction in CMJ and SJ peak force. This exploratory research demonstrates the strength of SPM to identify changes between entire movement force-time curves. Continued development and use of SPM analysis techniques could present the opportunity for refined assessment of athlete fatigue and readiness with the analysis of complete force-time curves

    Considerations when assessing endurance in combat sport athletes

    Get PDF
    Combat sports encompass a range of sports, each involving physical combat between participants. Such sports are unique, with competitive success influenced by a diverse range of physical characteristics. Effectively identifying and evaluating each characteristic is essential for athletes and support staff alike. Previous research investigating the relationship between combat sports performance and measures of strength and power is robust. However, research investigating the relationship between combat sports performance and assessments of endurance is less conclusive. As a physical characteristic, endurance is complex and influenced by multiple factors including mechanical efficiency, maximal aerobic capacity, metabolic thresholds, and anaerobic capacities. To assess endurance of combat sports athletes, previous research has employed methods ranging from incremental exercise tests to circuits involving sports-specific techniques. These tests range in their ability to discern various physiological attributes or performance characteristics, with varying levels of accuracy and ecological validity. In fact, it is unclear how various physiological attributes influence combat sport endurance performance. Further, the sensitivity of sports specific skills in performance based tests is also unclear. When developing or utilizing tests to better understand an athletes\u27 combat sports-specific endurance characteristic, it is important to consider what information the test will and will not provide. Additionally, it is important to determine which combination of performance and physiological assessments will provide the most comprehensive picture. Strengthening the understanding of assessing combat sport-specific endurance as a physiological process and as a performance metric will improve the quality of future research and help support staff effectively monitor their athlete\u27s characteristics

    Acute dehydration impairs endurance without modulating neuromuscular function

    Get PDF
    Introduction/Purpose: This study examined the influence of acute dehydration on neuromuscular function. Methods: On separate days, combat sports athletes experienced in acute dehydration practices (n = 14) completed a 3 h passive heating intervention (40∘C, 63% relative humidity) to induce dehydration (DHY) or a thermoneutral euhydration control (25∘C, 50% relative humidity: CON). In the ensuing 3 h ad libitum fluid and food intake was allowed, after which participants performed fatiguing exercise consisting of repeated unilateral knee extensions at 85% of their maximal voluntary isometric contraction (MVIC) torque until task failure. Both before and after the fatiguing protocol participants performed six MVICs during which measures of central and peripheral neuromuscular function were made. Urine and whole blood samples to assess urine specific gravity, urine osmolality, haematocrit and serum osmolality were collected before, immediately and 3 h after intervention. Results: Body mass was reduced by 3.2 ± 1.1% immediately after DHY (P \u3c 0.001) but recovered by 3 h. Urine and whole blood markers indicated dehydration immediately after DHY, although blood markers were not different to CON at 3 h. Participants completed 28% fewer knee extensions at 85% MVIC (P \u3c 0.001, g = 0.775) and reported a greater perception of fatigue (P = 0.012) 3 h after DHY than CON despite peak torque results being unaffected. No between-condition differences were observed in central or peripheral indicators of neuromuscular function at any timepoint. Conclusion: Results indicate that acute dehydration of 3.2% body mass followed by 3 h of recovery impairs muscular strength-endurance and increases fatigue perception without changes in markers of central or peripheral function. These findings suggest that altered fatigue perception underpins muscular performance decrements in recovery from acute dehydration
    • …
    corecore